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Abstract. Some remarkable overcomplete sytems of vectors (called systems of coherent vectors),
which offer almost the same facilities as an orthonormal basis and a simpler description of the action
of the group, are defined in the case of an orthogonal R-irreducible representation of a finite group
G by following the analogy with the theory of coherent states.

1. Introduction

A vector space is usually described by using a basis, but certain overcomplete systems of
vectors may also lead to useful descriptions. The method is mainly used in the case of infinite-
dimensional spaces where the coherent states are such systems of vectors [5, 6, 8, 10, 12].
Among the applications in the case of finite-dimensional spaces there is a three-axis description
of the honeycomb lattice [1,11], a four-axis description of the diamond structure [2,3] and the
description of some Z-modules in quasicrystal physics [4, 7, 9].

New applications of this method in the case of finite-dimensional real spaces seem to be
possible, and our purpose is to develop the corresponding general mathematical formalism.
Some of our results are inspired by the theory of coherent states [8, 10], but we think that
certain constructions done in the simpler case of a finite-dimensional space might also offer
some suggestions for the theory of coherent states.

2. Systems of coherent vectors

Let G be a finite group, g : En −→ En be an orthogonal R-irreducible representation of G in
the Euclidean space En = (Rn, 〈 , 〉), where 〈x, y〉 = ∑n

i=1 xiyi , and let u1 ∈ En be a fixed
non-zero vector. The set H of all the elements g ∈ G such that gu1 ∈ {u1,−u1} is a subgroup
of G. Consider the space M = G/H of all the left cosets of G corresponding to H , and fix
a set {g1, g2, . . . , gk} ⊂ G containing one and only one representative of each coset. We can
assume that g1 is the unit element of G.

Let e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) be the vectors
of the canonical basis of En, and let C = {u1, u2, . . . , uk}, where ui = giu1. Since
giu1 = gju1 
⇒ g−1

i gj ∈ H , that is, ui = uj 
⇒ gj ∈ giH , the mapping

� : M −→ C �(gi) = ui (1)

is a bijection which allows us to identify the sets M and C. If gi is replaced by another
representative g′

i of the coset giH then g′
iu1 ∈ {ui,−ui}.
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For each g ∈ G there exist the numbers sg1 , s
g

2 , . . . , s
g

k ∈ {−1, 1} and a permutation of the
set {1, 2, . . . , k} denoted also by g such that

gui = s
g

g(i)ug(i) (2)

for all i ∈ {1, 2, . . . , k}, and hence the subspace of En generated by C is G-invariant. Since
the considered representation of G in En is R-irreducible this subspace must coincide with En,
that is, C contains a basis of En (in the following, we shall consider only the case when C is
not itself a basis). We shall show that such a system leads to a useful description of En, and
call it a system of coherent vectors (SCV).

Theorem 1. There is a constant κ ∈ (0,∞) such that

x = κ

k∑
i=1

〈x, ui〉ui = κ
∑
y∈C

〈x, y〉y (3)

for all x ∈ En. In addition,

〈x, y〉 = κ

k∑
i=1

〈x, ui〉〈ui, y〉 ‖x‖2 = κ

k∑
i=1

〈x, ui〉2 (4)

for all x, y ∈ En.

Proof. The operator U : En −→ En, Ux = ∑k
i=1〈x, ui〉ui satisfies the relation

U(gx) =
k∑

i=1

〈gx, ui〉ui =
k∑

i=1

〈gx, gui〉gui = g

( k∑
i=1

〈x, ui〉ui
)

= g(Ux)

for all x ∈ En, g ∈ G. Since our representation is in a real space, we cannot use Schur’s lemma
in order to obtain directly that U must have the form Ux = λx. However, a real version of
this lemma holds since U is a self-adjoint operator

〈Ux, y〉 =
〈 k∑
i=1

〈x, ui〉ui, y
〉

=
k∑

i=1

〈x, ui〉〈ui, y〉 = 〈x,Uy〉

and, hence, it has a real eigenvalue λ. Denoting V = {x ∈ En|Ux = λx}, from the relation
Ux = λx 
⇒ U(gx) = λ(gx), it follows g(V ) ⊂ V , and in view of the irreducibility of the
representation of G in En we must have V = En; that is, Ux = λx for all x ∈ En. From
λe1 = Ue1 = ∑k

i=1〈e1, ui〉ui we obtain λ = 〈λe1, e1〉 = ∑k
i=1〈e1, ui〉2 ∈ (0,∞), and hence

there is κ ∈ (0,∞) such that λ = 1/κ . For any y ∈ En we obtain

〈x, y〉 =
〈
κ

k∑
i=1

〈x, ui〉ui, y
〉

= κ

k∑
i=1

〈x, ui〉〈ui, y〉

whence ‖x‖2 = κ
∑k

i=1〈x, ui〉2. �
Using the notations |g〉 = �(g), 〈g|x〉 = 〈�(g), x〉, the relation (3) can be rewritten in the

form x = κ
∑

g∈M〈g|x〉|g〉, in agreement with the theory of coherent states [10, relation (16)].

Example 1. The relations

a(x1, x2, x3) = (−x2, x1,−x3) b(x1, x2, x3) = (x1,−x3,−x2) (5)

define an orthogonal R-irreducible representation of the complete tetrahedral group Td =
43m = 〈a, b|a4 = b2 = (ab)3 = e〉 in E3. Choosing u1 = (1, 1, 1) we obtain the SCV

C = {(1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1)}. (6)

One can also remark that the SCV obtained by starting from u1 = (1, 0, 0) coincides with the
canonical basis {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
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Example 2. Let τ = (1 +
√

5)/2. The relations

a(x1, x2, x3) =
(
τ − 1

2
x1 − τ

2
x2 +

1

2
x3,

τ

2
x1 +

1

2
x2

+
τ − 1

2
x3,−1

2
x1 +

τ − 1

2
x2 +

τ

2
x3

)
b(x1, x2, x3) = (−x1,−x2, x3)

(7)

define an orthogonal R-irreducible representation of the icosahedral group Y = 235 =
〈a, b|a5 = b2 = (ab)3 = e〉 in E3. Choosing u1 = (0, 1, τ ) we obtain [8] the SCV

C = {(0, 1, τ ), (1, τ, 0), (−1, τ, 0), (−τ, 0, 1), (0,−1, τ ), (τ, 0, 1)} (8)

and choosing u1 = (1, 1, 1) we obtain the SCV C = {u1, u2, . . . , u10}, where

u2 = (−1, 1, 1) u5 = (0, τ, τ − 1) u8 = (0, τ, 1 − τ)

u3 = (1,−1, 1) u6 = (τ − 1, 0, τ ) u9 = (1 − τ, 0, τ )

u4 = (1, 1,−1) u7 = (τ, τ − 1, 0) u10 = (τ, 1 − τ, 0).

(9)

3. A geometric interpretation

A geometric interpretation of our formalism can be obtained by using some mathematical
results obtained in connection with the strip projection method [4, 8].

Lemma 1. The relation

Tg(α1, α2, . . . , αk) = (s
g

1αg−1(1), s
g

2αg−1(2), . . . , s
g

k αg−1(k)) (10)

defines an orthogonal representation of G in Ek .

Proof. Since s
hg

(hg)(i)u(hg)(i) = (hg)ui = h(s
g

g(i)ug(i)) = s
g

g(i)hug(i) = s
g

g(i)s
h
(hg)(i)u(hg)(i) we

obtain shg(hg)(i) = s
g

g(i)s
h
(hg)(i), that is, shgi = s

g

h−1(i)
shi , whence

Th(Tg(α1, . . . , αk)) = Th(s
g

1αg−1(1), . . . , s
g

k αg−1(k))

= (sh1 s
g

h−1(1)αg−1(h−1(1)), . . . , s
h
k s

g

h−1(k)
αg−1(h−1(k)))

= (s
hg

1 α(hg)−1(1), . . . , s
hg

k α(hg)−1(k)) = Thg(α1, . . . , αk).

In addition, 〈Tgα, Tgβ〉 = ∑k
i=1(s

g

i )
2αg−1(i)βg−1(i) = ∑k

i=1 αiβi = 〈α, β〉. �

Lemma 2. The subspaces

E
‖
k = {(〈x, u1〉, 〈x, u2〉, . . . , 〈x, uk〉)|x ∈ En} (11)

E
⊥
k =

{
(α1, α2, . . . , αk) ∈ Ek

∣∣∣∣
k∑

i=1

αiui = 0

}
(12)

are orthogonal, G-invariant, and Ek = E
‖
k ⊕ E

⊥
k .

Proof. Indeed, dim E
‖
k = n, dim E

⊥
k = k − n, and

Tg(〈x, u1〉, . . . , 〈x, uk〉) = (s
g

1 〈x, ug−1(1)〉, . . . , sgk 〈x, ug−1(k)〉)
= (〈x, g−1u1〉, . . . , 〈x, g−1uk〉) = (〈gx, u1〉, . . . , 〈gx, uk〉)

k∑
i=1

s
g

i αg−1(i)ui =
k∑

i=1

αis
g

g(i)ug(i) =
k∑

i=1

αigui = g

( k∑
i=1

αiui

)
= 0

k∑
i=1

〈x, ui〉αi =
〈
x,

k∑
i=1

αiui

〉
= 0

(13)
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for any g ∈ G, x ∈ En, and (α1, . . . , αk) ∈ E
⊥
k . �

Lemma 3. The orthogonal projector corresponding to E
‖
k is

π : Ek −→ Ek πα =
(
κ

k∑
i=1

〈u1, ui〉αi, . . . , κ
k∑

i=1

〈uk, ui〉αi
)
. (14)

Proof. If α = (〈x, u1〉, . . . , 〈x, uk〉) ∈ E
‖
k then

κ

k∑
i=1

〈uj , ui〉αi = κ

k∑
i=1

〈uj , ui〉〈x, ui〉 = 〈x, uj 〉

for all j ∈ {1, 2, . . . , k}, that is, πα = α. For α ∈ E
⊥
k , from the relation

κ

k∑
i=1

〈uj , ui〉αi = κ

〈
uj ,

k∑
i=1

αiui

〉
= 0

satisfied for all j ∈ {1, 2, . . . , k}, it follows that πα = 0. �

Lemma 4. The isometry

S : En −→ E
‖
k Sx = (

√
κ〈x, u1〉, . . . ,

√
κ〈x, uk〉) (15)

is an isomorphism of representations which allows us to identify the spaces En and E
‖
k .

Proof. The mapping S is an isometry

〈Sx, Sy〉 = κ

k∑
i=1

〈x, ui〉〈y, ui〉 = 〈x, y〉

and in view of (13) we have Tg(Sx) = S(gx) for any x ∈ En, g ∈ G. �
The representation of a vector x ∈ En as a linear combination of u1, u2, . . . , uk is not

unique, but the next theorem shows that the canonical representation (3) is a privileged one,
namely, the sum of the square of the coefficients takes its minimal value.

Theorem 2. Let x ∈ En. If x = ∑k
i=1 αiui then

(i) π(α1, . . . , αk) = (κ〈x, u1〉, . . . , κ〈x, uk〉)

(ii)

k∑
i=1

α2
i �

k∑
i=1

(κ〈x, ui〉)2.
(16)

Particularly,

π(κ〈x, u1〉, . . . , κ〈x, uk〉) = (κ〈x, u1〉, . . . , κ〈x, uk〉). (17)

Proof. In view of lemma 3 we obtain

(πα)i = κ

k∑
j=1

〈ui, uj 〉αj = κ

〈
ui,

k∑
j=1

αjuj

〉
= κ〈ui, x〉.

Since the vectors πα and α − πα are orthogonal, we obtain

k∑
i=1

α2
i = ‖α‖2 = ‖πα‖2 + ‖α − πα‖2 � ‖πα‖2 =

k∑
i=1

(κ〈x, ui〉)2.
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�

The numbers κ〈x, u1〉, . . . , κ〈x, uk〉 are the coordinates of x ∈ En with respect to the
SCV {u1, . . . , uk}. One can remark that α1, . . . , αk are the coordinates of a vector x ∈ En with
respect to {u1, . . . , uk} if and only if π(α1, . . . , αk) = (α1, . . . , αk), that is, if and only if

αi = κ

k∑
j=1

〈ui, uj 〉αj (18)

for all i ∈ {1, 2, . . . , k}.
The space Ek can be identified with the space of all the functions ϕ : M −→ R

by associating the function ϕα(gi) = αi with each α ∈ Ek . In this case, denoting
〈h|g〉 = 〈�(h),�(g)〉, relation (18) becomes

ϕ(h) = κ
∑
g∈M

〈h|g〉ϕ(g) (19)

in agreement with the theory of coherent states [10, relation (14)].

4. Description of linear operators in terms of an SCV

It is well known that an adequate description can simplify the solution of a problem. If the
elements of En are described by using their coordinates with respect to an SCV C then each
transformation g : En −→ En becomes a signed permutation

Tg(α1, α2, . . . , αk) = (s
g

1αg−1(1), s
g

2αg−1(2), . . . , s
g

k αg−1(k))

and, consequently, the form of theG-invariant mathematical objects (operators, equations, etc)
defined on En becomes simpler. Some concrete applications of the description of E3 obtained
by using the SCV {(1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1)} can be found in [2, 3].
In this section we only present some general results concerning the description of the linear
operators in terms of an SCV.

Let A : En −→ En be a linear operator, S̃ be the transpose of the matrix

S = √
κ

( 〈u1, e1〉 · · · 〈u1, en〉
· · · · · · · · ·

〈uk, e1〉 · · · 〈uk, en〉

)
π = κ

( 〈u1, u1〉 · · · 〈u1, uk〉
· · · · · · · · ·

〈uk, u1〉 · · · 〈uk, uk〉

)

and let

A =
( 〈e1, Ae1〉 · · · 〈e1, Aen〉

· · · · · · · · ·
〈en, Ae1〉 · · · 〈en, Aen〉

)
A′ = κ

( 〈u1, Au1〉 · · · 〈u1, Auk〉
· · · · · · · · ·

〈uk,Au1〉 · · · 〈uk,Auk〉

)

be the matrices associated with our operator with respect to the canonical basis {e1, . . . , en}
and the SCV C = {u1, . . . , uk}, respectively.

Theorem 3. We have

SS̃ = π S̃S = I A′ = SAS̃ TrA = TrA′ (20)

where I is the unit matrix.

Proof. Indeed,

κ

n∑
m=1

〈ui, em〉〈uj , em〉 = κ〈ui, uj 〉
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κ

k∑
m=1

〈um, ei〉〈um, ej 〉 = 〈ei, ej 〉

κ

n∑
j=1

n∑
m=1

〈ui, ej 〉〈ej , Aem〉〈ul, em〉 = κ〈ui, Aul〉

and

TrA′ = κ

k∑
i=1

〈ui, Aui〉 = κ

k∑
i=1

n∑
j=1

n∑
m=1

〈ui, ej 〉〈ej , Aem〉〈ui, em〉

=
n∑

j=1

n∑
m=1

〈em, ej 〉〈ej , Aem〉 =
n∑

j=1

〈ej , Aej 〉 = TrA.

�

Theorem 4. The operator A : En −→ En is a self-adjoint operator if and only if the matrix
A′ is symmetric.

Proof. IfA is self-adjoint then 〈ul, Aum〉 = 〈um,Aul〉 for all l, m ∈ {1, 2, . . . , k}. Conversely,
if this relation is satisfied, then

〈ei, Aej 〉 = κ2
k∑
l=1

k∑
m=1

〈ei, ul〉〈ul, Aum〉〈ej , um〉

= κ2
k∑
l=1

k∑
m=1

〈ei, ul〉〈um,Aul〉〈ej , um〉 = 〈ej , Aei〉.

�

Theorem 5. Any eigenvalue of A is at the same time an eigenvalue of the matrix A′.

Proof. If x ∈ En is an eigenvector corresponding to λ then

A′(Sx) = (SAS̃)(Sx) = S(Ax) = S(λx) = λ(Sx)

that is, Sx is an eigenvector of A′ corresponding to the eigenvalue λ. �

Theorem 6. If A,B : En −→ En are two linear operators such that AB = BA, and A′ and
B ′ are the corresponding matrices with respect to C, then A′B ′ = B ′A′.

Proof. We have A′B ′ = (SAS̃)(SBS̃) = S(AB)S̃ = S(BA)S̃ = B ′A′. �
The derivative of a function f : En −→ R with respect to a unit vector v ∈ En is usually

defined as
∂f

∂v
(x) = lim

t→0

1

t
(f (x + tv)− f (x)).

If ‖u1‖ = 1 then ‖u2‖ = · · · = ‖uk‖ = 1, and we have the relations

∂

∂ui
=

n∑
j=1

〈ui, ej 〉 ∂

∂ej

∂

∂ei
= κ

k∑
j=1

〈ei, uj 〉 ∂

∂uj
(21)

which are useful in the case of differential equations and operators.
The description obtained by using an SCV can be regarded as a discrete version of the

method of coherent states, and it may be a useful alternative to the usual description in certain
applications. Generally, the use of an SCV leads to simpler expressions for the G-invariant
objects, and hence a simplification of the mathematical formalism of certain models [2, 3].
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